layer {
name: layer의 이름/ID같은 것
type: 종류, 위 링크 참조
top: output화살표의 이름. 이를 받는 input화살표(bottom)도 있어야 됨.
}
실제 사용했던 예들
< concatenation layer >
layer {
name: "layer_concat1_012"
type: "Concat"
bottom: "pool6_01"
bottom: "pool6_11"
bottom: "pool6_21"
top: "concat1_012"
}
< Slicing layer >
# slicing into 2 layer in depth/channel
layer {
name: "layer_slicer_01"
type: "Slice"
bottom: "pool5_01"
## Example of label with a shape N x 3 x 1 x 1
top: "pool5_01_u"
top: "pool5_01_b"
slice_param {
axis: 1 # 1 is ch, 0 is num
slice_point: 256
}
}
# axis indicates the target axis; slice_point indicates indexes
in the selected dimension (the number of indices must be
equal to the number of top blobs minus one).
< ElementWise layer >
layer {
name: "layer_eltwiseMax_01"
type: "Eltwise"
bottom: "pool5_01_u"
bottom: "pool5_01_b"
top: "pool6_01"
eltwise_param { operation: MAX }
}
< Network-in-network >
> #output x ch x 1 x 1 conv layer사용하기
layer {
name: "layer_conv6_01"
type: "Convolution"
bottom: "pool5_01"
top: "pool6_01"
param {
name: "conv6_w"
lr_mult: 1
}
param {
name: "conv6_b"
lr_mult: 2
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
< data layer >
http://caffe.berkeleyvision.org/tutorial/data.html
layer {
name: "layer_data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_value: 84.819519043 # (x - mean)*scale
mean_value: 96.4913330078
mean_value: 118.523254395
scale: 0.00390625
}
data_param {
source: "/media/tr_data"
batch_size: 32
backend: LMDB
}
}
<python layer>
http://chrischoy.github.io/research/caffe-python-layer/
> #output x ch x 1 x 1 conv layer사용하기
layer {
name: "layer_conv6_01"
type: "Convolution"
bottom: "pool5_01"
top: "pool6_01"
param {
name: "conv6_w"
lr_mult: 1
}
param {
name: "conv6_b"
lr_mult: 2
}
convolution_param {
num_output: 128
pad: 0
kernel_size: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
< data layer >
http://caffe.berkeleyvision.org/tutorial/data.html
layer {
name: "layer_data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_value: 84.819519043 # (x - mean)*scale
mean_value: 96.4913330078
mean_value: 118.523254395
scale: 0.00390625
}
data_param {
source: "/media/tr_data"
batch_size: 32
backend: LMDB
}
}
<python layer>
http://chrischoy.github.io/research/caffe-python-layer/